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Executive Summary 

While micromobility services (e.g., bikeshare, e-bike share, e-scooter share) hold great potential for providing 

clean travel, estimating the effects of those services on vehicle miles traveled and reducing greenhouse gases is 

challenging. Many cities collect various micromobility usage metrics to regulate services, but there is a lack of 

detailed micromobility metrics for calculating sustainability benefits. This study: (1) leverages survey data and 

public feeds for micromobility usage to assemble estimates that are useful for cities to start monitoring the 

sustainability of micromobility services, (2) examines the usage trends before and after the initial shock of the 

pandemic, and (3) analyzes the effects of micromobility services on transit use through city- and stop-scale 

analysis of micromobility trips and transit ridership.  

Our exploration in city report data reveals that the trip frequency in most study cities is relatively modest—

below 2,500 trips/day. Micromobility fleet utilization ranged widely, from 0.7 to 12 trips per vehicle per day, 

and the average trip distance ranged from 0.8 to 3.6 miles. To assess which transportation modes were being 

substituted for by micromobility rides, we analyzed survey data from various cities (Figure ES-1). The median 

(range) rates at which micromobility trips substituted for other modes were: 41% (16–71%) for car trips, 36% 

(5–48%) for walking, and 8% (2–35%) for transit, 5% (2–42%) for no trip. In almost all the study cities, at least 

35% of micromobility trips replaced car trips. That a large share of micromobility trips is substituting for transit 

trips in some, but not all, cities should be explored in more detail. 

Accurately measuring trip distance is a crucial element in assessing the impact of micromobility—on 

transportation; on access to jobs, goods, services; and on the environment. However, the availability of trip 

distance data to researchers, planners, and policy makers has been limited. In some cases, the distance of a 

straight line connecting the origin and destination of a trip—the Euclidean distance—is more readily available 

and used as a substitute for actual trip distances. Our comparison of trip distance from different data sources 

shows that, in most cities, the mean of actual trip distance from city-report data is approximately 1.5 to 2 times 

longer than the mean Euclidean distance between trip start- and end-points from GBFS data. However, a 

calculation combining the Euclidean distance with trip duration can provide a more accurate estimate of actual 

trip distance. 
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Figure ES-1. Micromobility mode substitution and travel change from city-report data. Note: “Car” 

includes private vehicle, taxi, ride-hailing, ride-sharing, etc.; “Walk” includes walk, skateboard, etc.; 

“Bike” includes personal bike, scooter, etc. (n indicates sample size; * indicates full survey sample size, 

otherwise mode substitution question specific sample size is provided; DBS, docked bike-share, DLSS, 

dock-less bike-share, DLBS, dock-less e-scooter-share) 

The COVID-19 pandemic had dramatic effects on micromobility. Our analysis shows that most cities’ docked 

bike-share systems experienced more moderate declines in ridership than did dockless systems and showed 

recoveries to near pre-pandemic levels, especially on weekends. Almost all dock-less services, however, saw a 

decline in trips leading up to the pandemic, and had services suspended after the initial shock. Interestingly, 

there was a uniform increase in trip duration of docked bike-share across all observed cities after the initial 

shock of the pandemic. This trend was also observed in dock-less systems of each city before service 

suspensions in March 2020. 

Our study shows a weak and unclear connection between micromobility usage and transit ridership, as shown 

in Figure ES-2. Here, Portland is a clear outlier, with increased micromobility use correlating with increased 

transit use, especially on weekdays. This may be a result of the extensive light-rail system in Portland, as 

suggested by the following finding: In all the studied cities with rail and bus services (Atlanta, Miami, Portland, 

and Sacramento), there were positive associations between micromobility use and rail ridership, and the 

relationship between micromobility use and transit use was stronger for rail than for bus service. Further 
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research, beyond the scope of this study, is needed to more clearly describe the relationship between 

micromobility use and transit use and what policies and planning decisions can enhance their synergy and 

make transportation more equitable and environmentally sustainable. Nonetheless, the finding here may be of 

value to policy makers who compare the benefits of light rail systems to those of bus lines, suggesting that a 

synergistic relationship between micromobility and transit is perhaps more likely with high-quality light rail 

service in place. However, we caution against drawing definite conclusions from these results about synergy 

between modes, given the lack of data available on actual multimodal trips. 

 

Figure ES-2. Predicted counts of transit ridership per bus stop by week period and city 

Several findings can be useful for cities and regulators to better track the sustainability impact of micromobility 

services. Some of our findings lead naturally to metrics that can be used to estimate sustainability benefits 

from micromobility services (e.g., system miles), others are still exploratory (transit boarding and micromobility 

use relationships) and will require further study before integrating them into policy tools. In addition, we 

propose a suite of metrics that should be collected now, some that should be collected in the future, and a few 

options for how they could be used to monitor the sustainability of micromobility services, such as clean mile 
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credits. Some of these metrics, as shown in Table ES-1, are vehicle miles traveled and emissions of 

micromobility fleets and their service vehicles, miles and percentage of micromobility trips that connect to 

transit and/or that substitute for car trips. 

Table ES-1. Recommended metrics for monitoring sustainability of micromobility (MM) services 

Types of Metric Metric 

Micromobility (MM) 

Vehicle Metrics 

• MM fleet vehicle miles traveled (VMT) 

• MM vehicle emission factor 

Ridehail Substitution 

Metrics 

• % of MM trips that substitute ridehail trips 

• Length of MM trips that substitute ridehail trips 

Car Substitution 

Metrics 

• % of MM trips that substitute car trips 

• Length of MM trips that substitute car trips 

Transit Connection 

Metrics 

• % of MM trips that connect to transit  

• Length of MM trips that connect to transit 

• % of transit trips that substitute car trips 

• Length of transit trips that substitute car trips 
Operation Van Metrics • Van VMT (operations) 

• Operation van emission factor 
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Introduction 

While micromobility services (e.g., bikeshare, e-bike share, e-scooter share) hold great potential for providing 

clean travel, estimating the effects of those services on vehicle miles traveled and reducing greenhouse gases is 

challenging. One challenge is in assessing travel mode substitution from car trips to micromobility trips and 

micromobility connected transit trips. Unlike measuring emission reductions from vehicles and fuels, 

measuring emission reductions from changes in human behavior—such as substituting one transportation 

mode for another—is inherently more challenging because of heterogeneity in mode replacement and the 

challenges of quantifying such behavior. Furthermore, the rapid evolution of micromobility services from 2018 

to early 2022 have forced cities to regulate them to curb immediate social harm (e.g., safety, nuisances, etc.) 

with little consideration of how to support them as car alternatives in the long run (e.g., by re-focusing streets 

away from efficient movement of cars and toward safe movement for vulnerable road users). Another 

complication in assessing the potential benefits and costs of micromobility is the difficulty in estimating the 

miles traveled via micromobility and those miles that connect with transit. This difficulty comes mainly from 

what data on micromobility use is collected and who has access to that data.  

Government agencies are just beginning to discuss ways of incentivizing micromobility services. California has 

taken one step in this direction through Senate Bill (SB) 1014 (2018) Clean Miles Standard (CMS) and Incentive 

Program. With this law, the California Air Resources Board (CARB) and the California Public Utilities 

Commission (CPUC) are considering micromobility service use as a part of “qualified zero-emission vehicles” in 

its regulations of transportation network companies (TNCs: Uber and Lyft). Therefore, estimates of the impact 

micromobility services can have on reducing emissions is paramount for CMS.  

We leverage existing data published from 2017 to 2020 and collect new data in 2020 and 2021 to support 

future Clean Miles Standard regulation. CARB and the CPUC are currently developing and implementing new 

requirements for TNCs to reduce emissions. Since TNCs have historically provided micromobility services, 

CARB is interested in better understanding the characteristics of micromobility systems including travel 

frequency, distance, transit and TNC connections, and mode substitution.  

This study also has important sustainability implications outside of the Clean Miles Standard. While many cities 

collect various micromobility usage metrics to regulate services, there is a lack of detailed micromobility 

metrics for calculating sustainability benefits. Cities tend to collect numbers of trips, their rough origins and 

destinations, and average trip distance. These metrics often lack important details about usage such as the 

distribution of trip distances (which is usually heavily skewed toward short trips and strongly influences mode 

substitution). Some cities include data requirements as a part of permits to operate. For example, some cities 

require public facing data feeds such as the General Bikeshare Feed Specification (GBFS) and/or the public 

agency specific feed in the Mobility Data Specification (MDS). These feeds make it easier for cities to calculate 

the needed metrics for monitoring overall usage for operations, sustainability, and other transportation goals. 

Importantly, cities rarely collect information about non-revenue-generating emissions (vans and trucks) from 
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operating micromobility fleets. These are important for understanding the overall use-phase emissions of 

micromobility services. 

Beyond usage metrics, cities and regions need estimates of expected mode substitution and induced travel 

from micromobility services. Research shows that micromobility is substituting for car trips and other 

traditional modes of travel such as transit (Fukushige et al., 2021). Also, several studies show that individuals 

are using micromobility to connect to transit (Fitch et al., 2020), which in-turn increases transit ridership 

(Martin & Xu, 2022; Oeschger et al., 2020). The transit agencies are also taking notice of this effect by 

including micromobility while planning for the first and last mile connection to public transit (Mohiuddin, 

2021). These substitution and connection effects of the micromobility services are important in estimating the 

overall emission effect of the micromobility in the current transport landscape. However, this requires 

collecting data through surveying users and is inherently counterfactual in nature. Therefore, it is subject to 

validity concerns regarding estimating emissions. Nonetheless, without these metrics, estimating the impact of 

micromobility services on the sustainability of transportation, even in the use-phase, is challenging. 

In this study, we leverage survey data and public feeds for micromobility usage to assemble estimates that are 

useful for cities to start monitoring the impacts of micromobility services on the sustainability of 

transportation. We do not have access to non-revenue-generating vehicle miles traveled, so our analysis 

focuses only on the user side of the emissions equation. However, we propose simple metrics for future 

evaluations which will require new data from micromobility operators. 

To analyze the user side emissions from micromobility services we use existing disaggregate information about 

micromobility vehicle availability (General Bikeshare Feed Specification: GBFS) to infer trip characteristics (e.g., 

frequency, distance) at the entire system (or near entire system) level (i.e., the population of trips). The 

advantage of this data over survey data is in estimating trip characteristics with precision. The disadvantage is 

the inability to link system level trips to mode substitutions. Because our study took place during the 

unprecedented time of the COVID-19 pandemic, we also collect additional GBFS data for the same operators 

and cities during the project to improve estimates of trip characteristics and to understand the impact of 

shelter-in-home and other public policy responses to the COVID-19 pandemic on micromobility use. This will 

help us understand the effects of COVID-19 on micromobility services and in turn provide guidance for 

regulations and policies that can adapt to COVID-19 impacts. Lastly, we analyze the effect of micromobility 

services on transit use through city- and stop-scale analysis of micromobility trips and transit ridership. This 

analysis will be used to provide guidance for estimating micromobility-transit connections to support future 

revisions to the CARB’s Clean Mile Standard and other relevant policies and regulations.  
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Methods 

Data Collection 

This study uses system data from two sources: 1) System-level data on micromobility trips web-scraped from 

the General Bikeshare Feed Specification (GBFS), and 2) Local ridership data at the transit stop level as 

available in local form by contacting related authorities. It also includes summarized data from published 

reports of city-level surveys. 

System (GBFS) Data 

We acquired system-wide micromobility data by web-scraping the real-time status of micromobility services in 

15 cities, including Austin, TX, Atlanta, GA, Buffalo, NY, Denver, CO, Los Angeles, CA, Santa Monica, CA, 

Memphis, TN, Miami, FL, Portland, OR, San Ramon, CA, Tampa, FL, Washington, D.C., Arlington, VA, San 

Francisco, CA, and Sacramento, CA, provided by the companies between November, 2019 and October, 2020.   

The data specification varies by city and type of service. One type of data specification derives from docked 

bike-share systems. This type of service requires users to rent and return a bike at designated bike stations, so 

that trip origins and destinations are always at the stations. The acquired data shows the number of available 

bikes for each station at a timestamp, but no unique bike identifier for each bike at each station. Because of the 

lack of unique bike identifiers at each station, we subtracted the number of available bikes at current 

timestamp from the one at previous timestamp to observe the status change of stations. We considered the 

absolute value of the negative change and the positive change as the number of incoming and outgoing bike 

trips, respectively. We recognize this method as having potential bias to undercount trips in the case that two 

or more bikes are rented and returned nearly simultaneously. Although this issue makes for less accurate trip 

statistics, the data still gives insight of the trend of docked bike-share. 

Another type of data specification derives from dock-less micromobility services. This type of service enables 

users to return a bike or scooter anywhere within the service boundary. Unlike the previous data, the acquired 

data with this type shows the list of available micromobility vehicles (e-bike and e-scooter). When a vehicle 

becomes available for users, the information for the vehicle appears in the real-time data. We use the 

disappearance and then reappearance of individual bikes, based on a unique identifier to create a database of 

micromobility trips, which we then use to count the number of trips to and from the area around transit stops 

and stations. 

One challenge with this latter method of using micromobility trip data to count trips is that bikes also 

disappear and reappear from the data when false trips occur, so that we need to remove the false trips from the 

trip dataset. One type of false trip comes from operational activities (e.g., battery charging, rebalancing, repair). 

We excluded trips during which the battery level increased because these are almost certainly operational 

events rather than actual trips. We also removed trips at average speeds greater than 20 mph (a value 
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calculated by dividing Euclidean distance by travel time), because the vehicles speed maximal speed is 20 mph 

and actual trip distances are always equal to or longer than Euclidean distance. (The Euclidean distance is the 

distance along a straight line from origin to destination.) In addition, we removed trips of 4 hours or longer, 

which constituted a small percentage of total potential trips (approximately 0–3% by city), because these trips 

are likely to be operational events rather than actual trips. 

Another type of false trip may occur when users cancel trips. To correct for this, we excluded trips with the 

exact same longitude and latitude for both the origin and destination. (Even if someone checked out and 

returned the vehicle at the same location, the longitude and latitude would be slightly different the “origin” 

and “destination”.) We did find some trips of short Euclidean distances and short duration, which are also not 

likely to be actual trips. We assume that these cases occurred when users reserved but canceled vehicles and 

removed them from the dataset. Because some obstacles such as tall buildings lower the accuracy of 

geolocation, bike location could change slightly if users canceled bikes at such locations. We removed trips of 

10 meters or shorter Euclidean distances and those with less than 5 minutes in duration.  

Local Transit Ridership Data 

By reaching out to local transit officials, we requested and received transit ridership data from 8 US 

municipalities that operated micromobility services. The transit data cover an 8-month period from September 

2019 to April 2020. The ridership data are location-specific at the stop-level, meaning that each data point is a 

geographic transit stop location, along with said transit stop’s daily average ridership over the 8-month period. 

Some cities aggregated ridership by month, others by 3-month periods (annual quarters). 

Local Micromobility Mode Substitution 

We reviewed surveys of micromobility users conducted by cities and operators and summarized the respective 

mode substitutions, average trip distances, and system trip frequencies (Table 1). These data serve as a 

comparison with the GBFS summarized data on trip distances and frequency, and they are the only available 

evidence of mode substitution from micromobility services. 
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Table 1. Basic Statistics of the Transit Data Used from Selected Nine Cities 

Name Bus Rail Number of Bus 
Stop 

Observations 

Number of 
Rail Stop 

Observations 

Level of Data Micromobility 
Service 

Arlington  √  7,411  
Monthly average 

ridership 
e-bike and e-

scooter 

Atlanta  √ √ 144,125 2,628 
Period wise average 

ridership 
e-scooter 

Los Angeles √  101,014  
Monthly average 

ridership 
e-bike and e-

scooter 

Miami √ √ 21,265 53 
Monthly average 

ridership 
e-scooter 

Portland √ √ 52,302 1,779 
Period wise average 

ridership 
e-bike 

Sacramento √ √ 12,785 990 
Period wise average 

ridership 
e-bike 

San 
Francisco  

√  7,077  
Period wise average 

ridership 
e-bike 

Santa 
Monica 

√  930  
Period wise average 

ridership 
e-bike and e-

scooter 

Analysis Types 

We used the collected data in three analyses: 

1. Descriptive analysis of city-level micromobility survey data in cities across North America; 

2. Descriptive analysis of impact of COVID-19 on micromobility use based on GBFS data; 

3. Analysis of micromobility use influencing transit ridership based on transit data and GBFS data. 

Descriptive Analysis of City Report Data 

We summarize the micromobility reports from different city surveys in Table 2. This table shows, for different 

cities, the number of trips, the average trip duration, and the period when data from the micromobility services 

were collected. Generally, cities tend to run micromobility pilots before giving full permits to the micromobility 

providers and most of the data summarized in Table 2 and used in this study are from pilot periods. There is 

substantial variability among cities in terms of micromobility fleet utilization and trip distances. The fleet 

utilization ranges from 0.7 to 12 trips per day per micromobility vehicle. The average trip distance ranges from 

0.8 to 3.6 miles.  
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Table 2. Basic Statistics of Service Efficiency and Trip Distance from City Report Data 

City 
Vehicle 

Type 
# Veh 

#Trip/ 
day/ 
veh 

Trip 
Distance 

(Mean 
miles) 

Time Period 
Trip 

Sample 
Size 

Source 

Alexandria e-scooter 780 1.2 1.0 
Jan. 2019 to 
Sep. 2019 

230,000 
City of Alexandria(City 
of Alexandria, 2019a) 

Arlington  bike share 700 1.0 2.0 2018 261,129 

Department of 
Environmental Service, 
Arlington(Matlesky & 

Department of 
Environment, 2018) 

Arlington  
e-bike/e-
scooter 

863 1.9 0.9 
Oct. 2018 to 

Jun. 2019 
453,690 

Department of 
Environmental Service, 
Arlington (Matlesky & 

Department of 
Environment, 2018) 

Atlanta e-scooter 
3,682 

to 6523 
2.6 1.0 

Feb. 2019 to 
Dec. 2019 

438,500 
City of Atlanta (City of 

Atlanta, 2020) 

Baltimore e-scooter 
3,000-
13,000 

3.0 1.6 
Aug.15, 2018 

to Jan.31, 2019 
723,252 

Department of 
Transportation, 
Baltimore City 
(Department of 
Transportation 

Baltimore City, 2019) 

Boston 
Region 

e-bike N/A N/A 1.3 
Apr. 2018 to 

Sep. 2019 
301,000 

Metropolitan Area 
Planning Council 

(Akhavan et al., 2019) 

Brookline e-scooter 200 4.3 1.1 
Apr. 1 to Oct., 

2019 
156,000 Lime (Lime, 2019) 

Chicago e-scooter 2,500 3.0 1.5 
Jun.15, 2019 to 
Oct. 15, 2019 

407,296 
(821,615) 

City of Chicago (The 
City of Chicago, 2020) 

Denver e-bike 500 1 to 2 1.5 
Aug. 2018 to 

Jan. 2019 
58,330 Denver Public Works 

Denver e-scooter 1,265 4 to 12 0.9 
Aug. 2018 to 

Jan. 2019 
819,927 

Denver Public Works 
(Denver Public Works, 

2019) 

East Portland e-scooter N/A N/A 1.6 
Jun.23, 2018 to 
Nov.20, 2018 

44,155 
PBOT (Portland Bureau 

of Transportation, 
2019) 

Harrisonburg e-scooter N/A 5.0 0.8 
Sep10, 2018 to 
Oct. 11, 2018 

26,779 (City of Ithaca, 2019) 

Hoboken e-scooter 300 10.0 0.8 
May20, 2019 

to Nov.20,2019 
673,990 (Baer, 2019) 

Los Angeles 
e-bike/e-
scooter 

17,498 1.0 1.2 
Dec.31, 2018 

to Apr.15,2019 
1,865,629 

(The City of Los 
Angeles, 2020) 

Los Angeles 
(Metro) 

bike/e-bike 
share 

1,000 0.7 3.6 
Jul. 7, 2016 – 
Jun. 30, 2020 

1,060,737 
(The City of Los 
Angeles, 2020) 
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City 
Vehicle 

Type 
# Veh 

#Trip/ 
day/ 
veh 

Trip 
Distance 

(Mean 
miles) 

Time Period 
Trip 

Sample 
Size 

Source 

Milwaukee e-scooter 684 3.6 N/A 
Jul.23, 2019 to 
Nov. 30, 2019 

350,130 
(City of Milwaukee, 

2020) 

Minneapolis e-bike N/A N/A 2.2 
Jun. 10, 2010 
to Nov. 2010 

225,544 
(100,817) 

(Metro Bike, 2010) 

Portland e-scooter 2,043 2.9 1.1 
Jun.23, 2018 to 
Nov.20, 2018 

700,369 
(Portland Bureau of 

Transportation, 2019) 
Sacramento  
Region  

e-bike/e-
scooter 

N/A N/A 2.1 2019 976 (Fitch et al., 2020) 

San Francisco  
(Bay Wheels)  

bike/e-bike 
share 

2,600 1.7 N/A 
Jun. 28, 2017to 
Jun. 30, 2020 

N/A 

(San Francisco 
Municipal 

Transportation Agency, 
n.d.) 

San Francisco 
(Scoot, Skip)  

e-scooter 625 2 to 3 1.0 
Oct. 2018 to 

Feb. 2019 
242,398 
(24,925) 

(San Francisco 
Municipal 

Transportation Agency, 
2019) 

Santa Monica bike share 500 1.4 1.9 
Nov.12, 2015 – 
Dec.,31, 2018 

819,160 
(City of Santa Monica, 

2019) 

Santa Monica 
e-bike/e-
scooter 

2,500 4.0 1.3 
Oct. 2018 to 

Sep. 2019 
2,673,819 

(City of Santa Monica, 
2019) 

Seattle 
dockless 

bike share 

3,000 
to 

7,000 
N/A 1.2 2019 2,200,000 

(Seattle Department of 
Transportation, 2020) 

Spokane City 
bike/e-

scooters 
N/A N/A 1.1 

May to Nov. 
2019 

581,000 (City of Spokane, 2019) 

St. Louis e-scooter N/A N/A 0.5 
Apr. to Jul. 

2018 
160000 (Hibbard, 2018) 

Tucson e-scooter 688 1.3 0.9 
Sep.12, 2019 to 

Feb.12, 2020 
173981 (City of Tucson, 2020) 

Washington 
DC 

bike/e-
scooters 

4700 
1.35 to 

3.14 
N/A 

Sep. 2017 to 
Jun. 2018 

N/A 
(Government of the 
District of Columbia, 

2018) 
* The parenthesis in the sample size represents the sample size for mean trip distance. Abbreviated when the sample size for the trip 

distance and trips/day/veh is the same. 

** Italic font in #trips/day/veh indicates that the authors estimated it based on reported information (the number of sample days, fleet 

size, and the number of sample trips) in the city reports 

We compared the summary statistics on trip distance from city-report data and from GBFS data. One 

disadvantage of using GBFS data is the difficulty in estimating actual average trip distance. The fact that actual 

trip distance is similar to or higher than the Euclidean distance implies risks in underestimating the effect of 

VMT reduction from the implementation of micromobility services. We first compared average actual trip 

distance from the city-report data and average Euclidean distance between trip start- and end-points from 

GBFS data in five regions (Washington, D.C./Arlington, Los Angeles/ Santa Monica, Sacramento/Davis, Denver, 
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Atlanta) to understand the bias of aggregated data. We used different periods in city-report data and GBFS 

data due to the availability of the data. 

We also examined the relationship of actual trip distance to Euclidean distance and trip duration at a 

disaggregate level as the distribution of actual trip distance is usually heavily skewed toward short trips. We 

used bike-share data from bike-share in Portland, Oregon, as this published data contains the detail of trip 

information, including the coordinates of trip start- and end-points and actual trip distance. We used a gaussian 

model with only two variables, including Euclidian distance between trip start- and end-points and trip 

duration. We fit only simple models for easy applicability to other micromobility data.  

Descriptive Analysis of Impact of COVID-19 on Micromobility Use from GBFS Data 

We summarized system-level micromobility data from the GBFS to understand the trend of number of trips per 

bike, e-bike, or e-scooter per day, average trip duration per trip and average trip distance per trip before and 

during COVID-19. We estimated each metric on weekday and weekend by month. We excluded data for days 

with missing periods. 

To estimate the number of trips per bike, e-bike, or e-scooter per day, we counted the number of trip and fleet 

size for each day. Using the cleaned GBFS data we counted the number of free bikes/scooters for each 

timestamp and set the maximum number for each day as fleet size. For docked bike-share systems where we 

did not collect bike free status data, we used collected fleet size information of the beginning of the month in 

Open Bike Share Data as fleet size for all days of the corresponding month of the systems. 

For a comparative analysis of micromobility use before versus during COVID-19, we considered data in March 

2020 or after as “during” COVID-19, although cases of COVID-19 infection were revealed to have occurred in 

the United States before March 2020. One major reason for this approach is that many cities introduced 

shelter-in-place orders or relevant policies in March 2020, strongly influencing travel patterns. 

Relationship Between Micromobility Use and Transit Use 

In this analysis we examined the relationship between use of micromobility use of public transit. We used 

micromobility and public transit ridership data in eight cities including four California cities (i.e., Los Angeles, 

Sacramento, San Francisco, and Santa Monica), Arlington, VA, Atlanta, GA, Miami, FL, and Portland, OR. The 

number of transits stops (i.e., bus and rail) and ridership data collection is summarized in Table 1. In this study, 

we only focus on analyzing how micromobility services relate to transit boardings (e.g., first-mile). People may 

use micromobility to egress from public transit (e.g., last-mile), but at least one study found the relationship 

between micromobility trips near transit stops to be similar for access and egress (Mohiuddin et al., 2021). One 

advantage of dock-less micromobility service is that users can drop off their vehicles near their destination, 

such that their trip purpose (transit connection in this case) is more likely to be associated with a point of 

interest near the trip end. We counted the number of micromobility trips ending within the buffer area of each 

public transit stop/station with the length of 50 m, 100 m, and 200 m, and used those counts to relate to 

transit boardings.  
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To gain insight on the demographics and travel behavior of people living near transit stops, we joined block 

group census data to each nearby transit stop location, including gender, race, income, age, and travel 

behaviors. Finally, walkability scores as published by the United States Environmental Protection Agency were 

also joined to each transit stop.  

We used Poisson regression to examine the relationship between micromobility use and public transit use. We 

considered five different types of predictor variables: micromobility trips, temporal variables, socioeconomic 

variables, mode share, and walkability index. Table 3 shows the list of predictor variables used in the model. 

While we included these variables, we only comment on the predictor variable micromobility trips in this 

report. In essence we include the other predictor variables only to adjust for their relationships with transit use 

to better assess the relationship between micromobility trips and transit use. We used the R package glmer to 

fit a Poisson mixed effects model (n=289,891) (Bates et al., 2013) with varying intercepts for transit 

stop/station, city, and period, to account for stop-, city-, and period-level variation beyond that explained in 

other predictors. We used the logarithm as the link function with the following tuning parameters and settings: 

0 for nAGQ, bobyqa for optimizer, and 10000 for maxfun.  
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Table 3. Transit Model Predictor Variables 

Variable Description Data Source 

Micromobility Trips Number of micromobility trips ending withing a buffer area of 

transit facilities with the radius of 50 m, 100 m, and 200 m 

GBFS 

Temporal Variables   

Day Type 

 

Whether transit ridership occurred on a weekday, Saturday, or 

Sunday 

Transit Ridership 

Reports 

Period Whether transit ridership occurred between Sept-Dec 2019 

(period 1), or Jan-Mar 2020 (period 2) 

Transit Ridership 

Reports 

Socioeconomic Variables   

Population Density Population density of transit stop census block group 2019 ACS Survey 

Percentage of Female Percentage of female residents in transit stop census block 

group 

2019 ACS Survey 

Percentage of Black Percentage of Black residents in transit stop census block group 2019 ACS Survey 

Percentage of Low 

Income 

Percentage of low-income households in transit stop census 

block group 

2019 ACS Survey 

Percentage of 

Student 

Percentage of students in transit stop census block group 2019 ACS Survey 

Mode Share   

Car Percentage of auto commuters in transit stop census block 

group 

2019 ACS Survey 

Transit Percentage of transit commuters in transit stop census block 

group 

2019 ACS Survey 

Active Transportation Percentage of cycling or walking commuters in transit stop 

census block group 

2019 ACS Survey 

Walkability Index   

Walkability Index A score measuring the walkability of a census block group (out 

of 20), established by the United States EPA, based on 

indicators such as commercial-residential mix, diversity of 

employment types, and street intersection density.  

US EPA 
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Results and Discussion 

Descriptive Analysis of City Report Data 

To better understand micromobility usage trends in the US, we conducted a review of all available user survey 

data as published by municipalities and operators. Our primary motivation behind the review was to 

understand the way that micromobility affected the demand for other modes of transport using survey-based 

mode substitution. Our review of survey data also revealed average trip frequencies, distances, and durations. 

Basic Statistics of Service Efficiency and Trip Distance from City Report Data 

The micromobility trip frequency in most study cities is relatively modest, staying below 2,500 trips/day. On 

the higher end, San Francisco, Santa Monica, Seattle, San Diego, Chicago, and Portland all boast over 5,000 

trips/day. Los Angeles is a clear outlier, reporting over 17,500 trips/day. Micromobility trip distances, by 

nature, are short. In most cities surveyed, the length of an average trip was 1 mile or less. Minneapolis and 

Sacramento had average trips of over 2 miles, with Los Angeles again presenting itself as a considerable outlier 

with an average trip distance of 3.5 miles. 

Mode Substitution from City Report Data 

Mode substitution refers to the mode that users would have used for a trip if micromobility were not an option. 

Figure 1 shows the extent to which micromobility substituted for different modes in the cities studied. In 

almost all the study cities, at least 35% of micromobility trips replaced car trips. Rosslyn, Virginia (Demeester 

et al., 2019) and St. Louis, Missouri are positive outliers, with over 60% of their riders replacing car trips with 

micromobility trips. The next most popular mode that micromobility substitutes for is walking. 

It is worth noting that a significant portion of micromobility trips substitute for walking trips in most of the 

cities. Also, micromobility trips are substituting for a considerable percentage of transit trips, mostly in big 

cities such as Washington D.C., Minneapolis, and Chicago (Fishman et al., 2013; The City of Chicago, 2020). 

The median (range) rates at which micromobility trips substituted for other modes were: 41% (16–71%) for car 

trips, 36% (5–48%) for walking, and 8% (2–35%) for transit, 5% (2–42%) for no trip. This suggests that transit 

substitution is primarily a concern in larger cities. Lastly, some cities showed substantial increases in trip 

making from micromobility services (percent of “no trip” in Figure 1 indicating the trip would not have taken 

place had it not been for the micromobility service). 

Generally, Cities asked the respondents about their last micromobility trips and asked them which mode they 

would have used for that trip if micromobility service were not available. The surveys from the Cities of 

Chicago, Hoboken, and Alexandria allowed respondents to select multiple options for the mode substitution 

questions (City of Alexandria, 2019b; The City of Chicago, 2020). The City of Milwaukee used the “no trip” 

response as a screening question and only asked about which mode they would have used if micromobility 
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were not available to those who did not respond “no trip” to the initial mode substitution question (6-t, 2019; 

City of Milwaukee, 2020). However, we recalculated those shares for this case to make them comparable with 

the other cities. 

 

Figure 1. Micromobility mode substitution and travel change from city-report data. Note: “Car” includes 

private vehicle, taxi, ride-hailing, ride-sharing, etc.; “Walk” includes walk, skateboard, etc.; “Bike” 

includes personal bike, scooter, etc. (n indicates sample size. * indicates full survey sample size, 

otherwise mode substitution question specific sample size is provided. DBS: docked bike-share, DLSS: 

dock-less bike-share, DLBS: dock-less e-scooter-share)  

Comparison of Trip Distance from City Report Data and GBFS Data 

Our comparison shows that the mean actual trip distance from city-report data is approximately 1.5 to 2 times 

longer than the mean of Euclidean distance between trip start- and end-points taken from GBFS data (Figure 2 

and Figure 3). The mean of Euclidean distance between trip start- and end-points for dock-less e-scooter-share 

in the region of Washington, D.C./Arlington, Los Angeles/Santa Monica, and Atlanta was between 0.5 to 0.7 

miles, but the mean of actual reported trip distance was around 1 mile. The mean Euclidean distance and mean 

actual trip distance for docked and dock-less bike-share services in these three regions are 1 mile and 1.5 to 2 

miles, respectively, longer than of dock-less e-scooter-share. The exception is bike/e-bike-share in LA Metro 

having a high mean of actual trip distance of 3.6 mile. 
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Figure 2. Distribution of Euclidean distance from GBFS trip data and mean of the Euclidean distance and 

actual trip distance from city-report data by types of micromobility: Washington, D.C./Arlington, 

LA/Santa Monica 



 

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects 19 

 

 

Figure 3. Distribution of Euclidean distance from GBFS trip data and mean of the Euclidean distance and 

actual trip distance from city-report data by types of micromobility: Sacramento/Davis, Denver, Atlanta 
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Relationship Between Actual Trip Distance and Euclidean Distance 

The comparison of Euclidean distance between trip start- and end-points and actual trip distance in Portland 

shows that the mean Euclidean distance was 0.9 miles and the mean actual trip distance was 2.0 miles. Also, 

Figure 4 shows that the distribution of actual trip distance is more skewed to the right than of the Euclidean 

distance. The higher variance of actual trip distance at a shorter Euclidean distance suggests a strong demand 

for round trips (Figure 5 left). Figure 5 and our simple estimates (See results in Appendix A: Trip Distance 

Model Parameter Summaries) suggest that trip duration can act as a better indicator to estimate actual trip 

length than Euclidean distance. That there are some unreasonable data points having higher Euclidean distance 

than actual trip distance implies some measurement error. 

 

Figure 4. Comparison of Distribution of Euclidean distance and Actual Trip Distance: Portland 
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Figure 5. Relationship between Euclidean Trip Distance and Actual Trip distance (Left) and between Trip 

Duration and Actual Trip Distance (Right). Red lines are an approximation of the linear relationship 

between each pair of attributes. 

Although Euclidian distance is not a good measure of vehicle miles traveled, when paired with trip duration, 

actual trip length can be estimated with great accuracy from a simple gaussian model1 (Figure 6). This suggests 

that cities that have not collected data on trip distances can estimate them easily. 

 
1 We split trip dataset into two third of the dataset as train data and the rest as test data. We fit the train data to models 
with only Euclidean distance (Model 1), only trip duration (Model 2), and both (Model 3), then validated the models with 
the test data. Root-mean-square error (RMSE) for each model were 2.18 miles, 1.39 miles, and 1.21 miles, respectively. 
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Figure 6. Comparison of Distribution of Predicted Trip Distance (based on Euclidean distance combined 

with trip duration and a gaussian model) and Actual Trip Distance: Portland 

Descriptive Analysis: Impact of COVID-19 on Micromobility Use 

The COVID-19 pandemic had dramatic effects on micromobility. Before the pandemic, short trips for dining 

and leisure were perfect candidates for micromobility usage. COVID-19 all but eliminated the demand for 

these trips. These issues were compounded by a widespread aversion to touching or interacting with shared 

surfaces to reduce the spread of disease. Despite operators’ best efforts to sanitize vehicles and promote their 

availability, global micromobility ridership plummeted.  

We examine the usage trends before and after the initial shock of the pandemic. Usage trends are observed for 

docked bike-share, dock-less bike-share, and dock-less scooter-share. Docked bike-share observations provide 

the richest dataset because most docked bike-share services remained operational throughout the pandemic. 

Dock-less service, however, experienced interruptions as operators halted activity and pulled vehicles from 

cities during the pandemic. Three metrics are described: average trips per bike per day, average trip distance, 

and average trip duration. 

Number of Trips per Vehicle from GBFS Data 

Docked bike-share in San Francisco shows just how substantial an effect the pandemic had on micromobility 

usage. In January 2020, each docked vehicle averaged over 3 rides per day. By April 2020, that average had 

dropped to 0.5 rides per day and did not get much higher than that during all of 2020. Other cities’ docked 

bike-share systems experienced more moderate declines in ridership, and showed recoveries to near pre-

pandemic levels, especially on weekends (Figure 7). The data collected in Washington DC and Memphis stand 

out in this regard. Washington DC docked bike-share saw an initial dip in rides per day but was back to normal 

levels by June 2020.  
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In some cases, ridership not only recovered but increased after the early part of the pandemic, at least for some 

trip types. For example, a 75% increase in rides per day on weekends was observed in Washington DC from 

April to June of 2020 (Figure 7). Docked bike-share in Memphis also saw a 40% increase in rides per day after 

the onset of the pandemic in March 2020. Almost all dock-less services, however, saw a decline in trips leading 

up to the pandemic, and had services suspended after the initial shock (Figure 8 and Figure 9). 

 

Figure 7. Number of Trips per Vehicle: Docked bike-share 
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Figure 8. Number of Trips per Vehicle: Dock-less bike-share 

 

Figure 9. Number of Trips per Vehicle: Dock-less e-scooter share 
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Trip Distance from GBFS Data 

Trip distances2 in this section were measured as the Euclidean (straight-line) distance between trip origins and 

destinations. In general, trip distances did not change in response to the pandemic, with two exceptions. 

Docked bike-share trips in Portland saw a spike in average distance, a 100% increase (Figure 10). Later in the 

year, trip distances settled down to 50% higher than pre-pandemic levels. Trip distances of dock-less systems 

in Washington DC were substantially affected. In that city, dock-less bikes saw a 50% decrease in average 

distance, while dock-less scooters saw a 30% increase in distance (Figure 11 and Figure 12). 

 

Figure 10. Average Trip Distance: Docked bike-share 

 
2 Trip distance of docked bike-share in Portland is actual trip distance.  
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Figure 11. Average Trip Distance: Dock-less bike-share 

 

Figure 12. Average Trip Distance: Dock-less e-scooter share 
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Trip Duration from GBFS Data 

Perhaps the most surprising trend is the uniform increase in trip duration of docked bike-share across all 

observed cities, which peaked in April and May 2020, then declined slightly (Figure 13, Figure 14, and Figure 

15). This increase cannot be entirely due to the change of the seasons from winter to summer, as the majority 

of these study cities are located in mild climates. Trip duration of dock-less systems in each city increased even 

before service suspensions in March. 

 

Figure 13. Average Trip Duration: Docked bike-share 
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Figure 14. Average Trip Duration: Dock-less bike-share 

 

Figure 15. Average Trip Duration: Dock-less e-scooter share 
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Micromobility and Public Transit 

Our Poisson regression analysis (See Appendix B for parameter summaries) found that public transit use is 

associated with micromobility use, controlling for temporal factors, socioeconomic factors, and a built-

environment factor (i.e., walkability index). Transit facilities surrounded by micromobility trips had higher 

ridership, but the relationship varied by city and types of transit facilities. Figure 16 shows a distinct positive 

association between micromobility trips surrounding transit stops and transit ridership in the city of Portland. 

Higher micromobility trips surrounding a bus stop in other cities—including San Francisco, Santa Monica, 

Arlington, Miami, and Sacramento—are also associated with higher transit ridership, but the relationship is 

weaker than with rail, as seen by comparing the flatness of the curves for a given city between Figure 16 (bus 

stops) and Figure 17 (rail stops). However, a negative association between micromobility trips surrounding 

transit stop and transit ridership are observed in Los Angeles and Atlanta (Figure 16). Some of these negative 

correlations have been reported in at least one prior study (Graehler et al., 2019) 

In the case of rail transit, our results show that all cities (Atlanta, Miami, Portland, and Sacramento) have 

positive associations between micromobility use and rail ridership (Figure 17), and that the relationship 

between micromobility use and transit is larger for rail compared to bus service (Figure 16 and Figure 17). The 

micromobility relationship with rail transit is strongest in Portland, which can be seen from the steep slope of 

the effect plot (Figure 17).  

The degree to which these findings constitute real micromobility to transit connections remains unknown, as 

we did not have data on actual multi-modal trips. However, given the relatively flat curves in Figure 16 for most 

cities, we think this is evidence that micromobility services are not acting as an access mode for bus service 

very often. At least only some cities show potential for this connection. The same is less true for rail, as the four 

cities with rail transit showed at least slightly positive relationships between micromobility use and ridership. 
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Figure 16. Predicted counts of transit ridership per bus stop by week period and city 
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Figure 17. Predicted counts of transit ridership per railway station by week period and city 
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Conclusions and Policy Implications 

A key to assessing the positive and negative impact of micromobility on the sustainability of transportation 

involves determining: the number of micromobility trips taken per day in an area with micromobility services; 

the number of miles traveled via micromobility; and the degree to which micromobility trips substitute for car 

travel and substitute for or increase (by first/last mile coverage) transit use. Our analysis of data from 

approximately 20 U.S. cities reveals that the trip frequency is relatively modest—below 2,500 trips/day. In 

almost all the study cities, at least 35% of micromobility trips replaced car trips and 8% replaced transit trips. 

That a higher percentage of micromobility trips substituted for transit trips in large cities than in small cities 

suggests that transit substitution is only a concern in some cities. One challenge in assessing impact is the 

limited availability of data on actual distances for trips taken by micromobility. This can be estimated—when 

origin and destination data are available—by the distance of a line connecting these two points, i.e., the 

Euclidean distance. Our comparison shows that, in most cities, the mean of actual trip distance from city-report 

data is approximately 1.5 to 2 times longer than the mean Euclidean distance from GBFS data. However, this 

underestimation by Euclidean distance can be partially corrected by combining it with data on trip duration.  

As an industry, micromobility was deeply impacted by COVID-19, with rider miles traveled declining by 50-

60% worldwide (Heineke, 2020). While changes in ridership varied across all our study areas, our findings 

clearly indicate that docked bike-share systems out-performed dockless systems during the pandemic. While 

the flexible and versatile nature of dockless systems allowed private operators to quickly remove or suspend 

services in US cities, docked systems proved to be a more stable and reliable provider of mobility during the 

pandemic. This distinction between docked and dockless performance during the pandemic may be particularly 

important in shaping future transportation planning and policy. Docked systems, where docks require utility 

connections and/or public right-of-way, are generally more financially supported by municipalities as a mobility 

service for residents. Even during periods of low ridership, docked systems generally remained in operation 

during the pandemic. Private dockless providers, however, curtailed or suspended operations when ridership 

and profits dropped. Policymakers can advocate for city-owned docked systems as a reliable mobility option by 

encouraging increased investment in docked micromobility programs. 

Our study of the pre-pandemic relationship between micromobility usage and transit ridership revealed varied 

results by transit type. Our model showed a weak and unclear connection between micromobility usage and 

bus ridership but found higher light rail ridership at stations with more micromobility trips ending nearby. For 

both bus and rail ridership, the city of Portland represented a unique outlier, demonstrating a very strong 

positive relationship between micromobility use and transit use. These findings on micromobility use in 

relation to bus vs. train use and the findings in Portland can be valuable to policy makers and planners 

comparing the benefits of light rail systems to those of bus lines and considering their synergy with 

micromobility. Some transit operators have already started considering the potential of micromobility services 

to strengthen the transit system by including them in first and last mile planning (Mohiuddin, 2021).  
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Although these analyses have important limitations, several findings may be useful for cities and regulators in 

tracking the sustainability impacts of micromobility services. We use these findings to provide policy guidance 

in Table 4. Some of our findings lead naturally to metrics that can be used to estimate sustainability benefits 

from micromobility services (e.g., system miles), others are still exploratory (transit boarding and micromobility 

use relationships) and will require further study before integration into policy tools. In addition, we propose a 

suite of metrics that should be collected now, some that should be collected in the future, and a few options for 

how they could be used to monitor the impact of micromobility services on the sustainability of transportation. 

Table 4. Recommended metrics for monitoring the impacts of micromobility (MM) services on the 

sustainability of transportation 

Metric Relevance Method of 

Measurement 

Data Source Availability 

Micromobility (MM) Vehicle Metrics 

MM Fleet 

VMT 

Quantifying the total 

VMT of an MM fleet 

allows calculation of its 

baseline emissions and 

clean miles 

Determine the total VMT 

of MM vehicles. 

MM operators Depends on 

data-sharing 

agreements 

MM Vehicle 

Emission 

Factor 

Vehicle emission factors 

allow for the calculation 

of total fleet emissions 

Determine the emissions 

associated with the 

electricity that is 

required to power MM 

vehicle travel. 

MM vehicle 

efficiency 

specifications 

from operators, 

emissions 

associated to 

local electricity  

Depends on 

data-sharing 

agreements 

Car Substitution Metrics 

% of MM 

trips that 

substitute car 

trips 

Knowing how many MM 

trips replace car trips is 

important in calculating 

the car VMT that MM 

replaces 

Surveys and GPS travel 

diaries can provide car 

mode substitution rates. 

It is important to track 

ridehail trips separately 

from owned cars. 

Public research City-specific 

data is now 

widespread, 

local data must 

be collected 

Length of MM 

trips that 

substitute car 

trips 

Knowing the length of 

MM-substituted car trips 

is important in 

calculating the car VMT 

that MM replaces 

Surveys and GPS travel 

diaries can provide 

estimates of MM-

substituted car trip 

lengths 

Public research City-specific 

data is rare, 

local data must 

be collected 
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Metric Relevance Method of 

Measurement 

Data Source Availability 

Transit Connection Metrics 

% of MM 

trips that 

connect to 

transit  

MM providers can be 

credited with clean miles 

when connecting users 

to transit 

Surveys, GPS travel 

diaries, and analysis of 

MM demand near transit 

stops can provide transit 

connection rates. 

Integration of transit and 

micromobility payment 

is needed for most 

accurate assessments.  

Public research City-specific 

data is now 

widespread, 

local data must 

be collected 

Length of MM 

trips that 

connect to 

transit 

Transit-connecting MM 

trips can be counted as if 

they were clean transit 

miles 

Surveys and GPS travel 

diaries can provide 

estimates of transit-

connecting MM trips. 

Integration of transit and 

micromobility payment 

is needed for most 

accurate assessments. 

Public research City-specific 

data is rare, 

local data must 

be collected 

% of transit 

trips that 

substitute car 

trips 

MM providers can be 

credited with clean miles 

for the transit trips that 

they connect to, which 

have substituted for car 

trips 

Surveys and GPS travel 

diaries can provide 

estimates of transit-

substituted car trips 

Public research This metric will 

vary by city; it is 

relatively well 

studied through 

national and 

area-specific 

household 

travel surveys  

Length of 

transit trips 

that 

substitute car 

trips 

MM providers can be 

credited with clean miles 

for the transit transit-

substituted car trip miles 

that they connect to 

Surveys and GPS travel 

diaries can provide 

estimates of transit-

substituted car trips 

Public research This metric will 

vary by city; it is 

relatively well 

studied through 

national and 

area-specific 

household 

travel surveys  
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Metric Relevance Method of 

Measurement 

Data Source Availability 

Operation Van Metrics 

Van VMT 

(operations) 

Van miles can be 

counted against the 

clean miles of the fleet 

Determine the total VMT 

of operation vans 

MM operators Depends on 

data-sharing 

agreements 

Operation 

van emission 

factor 

Van emission factors 

allow for the calculation 

of van-related emissions 

Determine the average 

fuel efficiency of vans 

MM operators Depends on 

data-sharing 

agreements 

For state-level regulation of Clean Mile Credits, CARB might consider mandating reporting for many of the 

variables in Table 4. Many municipalities that foster micromobility seek improved integration between transit 

and micromobility (Fuller et al., 2021). One step toward improved integration can be apps that allow users to 

seamlessly and simultaneously purchase micromobility rentals and transit passes. With this improvement in 

place, it will be possible to count not just the mileage of a micromobility trip, but also the miles traveled by any 

connecting transit trip that micromobility facilitated. Rewarding credits for these connected transit miles can 

better reflect the clean miles impact of micromobility. Once the tracking of transit connections is feasible (e.g., 

through shared payment for micromobility to transit), CARB should also require collecting total connecting 

miles of transit and consider credits for full trip length. This approach would provide much greater accuracy 

than the transit connection metrics in Table 4 and aligns with on-going projects such as the California 

Integrated Travel Project (Cal-ITP).  



 

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects 36 

 

References 

6-t. (2019). Uses and users of free-floating e-scooters in France. https://6-t.co/en/free-floating-escooters-france/ 

Akhavan, A., Gately, C., Gehrke, S., Hydrick, G., Guerrero, J. P., Reardon, T., Sadeghinasr, B., & Taylor, A. (2019). 

Examining 18 Months of Dockless Bikeshare in Metro Boston. http://www.mapc.org/wp-

content/uploads/2019/11/EMBARGOED-First-Miles-Bikeshare-Report.pdf 

Baer, M. (2019). Scooter support Hoboken survey shows respondents favor e-scooter-sharing program. 

https://hudsonreporter.com/2019/11/27/scooter-support/ 

Bates, D., Maechler, M., Bolke, B., & Walker, S. (2013). Linear mixed-effects models using Eigen and S4. Package 

“lme4” (p. 74). 

City of Alexandria. (2019a). Alexandria Dockless Mobility Pilot Evaluation. November. 

https://www.alexandriava.gov/uploadedFiles/tes/info/EvaluationReportReducedSize.pdf 

City of Alexandria. (2019b). Alexandria Dockless Mobility Pilot Evaluation. 

https://www.alexandriava.gov/uploadedFiles/tes/info/EvaluationReportReducedSize.pdf 

City of Atlanta. (2020). Micro-mobility Statistics Update. 

City of Ithaca. (2019). MOBILITY, ACCESSIBILITY, & TRANSPORTATION COMMISSION AGENDA. 

https://www.cityofithaca.org/AgendaCenter/ViewFile/Agenda/_04222019-1857 

City of Milwaukee. (2020). City of Milwaukee 2019 Dockless Scooter Pilot Study Evaluation and Recommendation 

Report. https://city.milwaukee.gov/ImageLibrary/Groups/cityBikePed/Dockless-

Scooters/2019DocklessScooterPilotStudyEvaluationandRecommendationReport3.pdf 

City of Santa Monica. (2019). SHARED MOBILITY PILOT PROGRAM SUMMARY REPORT. 

https://www.smgov.net/uploadedFiles/Departments/PCD/Transportation/SantaMonicaSharedMobilityEv

aluation_Final_110419.pdf 

City of Spokane. (2019). WheelShare: Spokane’s Shared Mobility Program. 

https://my.spokanecity.org/projects/wheelshare/ 

City of Tucson. (2020). E-Scooter Pilot Program Evaluation. 

https://www.tucsonaz.gov/files/bicycle/documents/E-Scooter_Pilot_Evaluation.pdf 

Demeester, L. R., Mjahed, L. B., Arreza, T., & Covill, N. (2019). Arlington County Shared Mobility Devices (SMD) 

Pilot Evaluation Report. https://mobilitylab.org/research-document/arlington-county-shared-mobility-

devices-smd-pilot-evaluation-report/ 



 

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects 37 

 

Denver Public Works. (2019). Denver Dockless Mobility Program Pilot Interim Report. 

https://www.denvergov.org/files/assets/public/doti/documents/programsservices/dockless-

mobility/denver-dockless-mobility-pilot-update-feb2019.pdf 

Department of Transportation Baltimore City. (2019). Dockless Vehicle Pilot Program: Evaluation Report. 

https://transportation.baltimorecity.gov/sites/default/files/Pilot evaluation report 

FINAL.pdf#:~:text=The city began its dockless pilot program in,public perception of dockless vehicles on 

altimore’s streets. 

Fishman, E., Washington, S., & Haworth, N. (2013). Bike Share: A Synthesis of the Literature. 

Http://Dx.Doi.Org/10.1080/01441647.2013.775612, 33(2), 148–165. 

https://doi.org/10.1080/01441647.2013.775612 

Fitch, D., Mohiuddin, H., & Handy, S. (2020). Investigating the Influence of Dockless Electric Bike-share on Travel 

Behavior, Attitudes, Health, and Equity. https://doi.org/10.7922/G2F18X0W 

Fukushige, T., Fitch, D. T., & Handy, S. (2021). Factors influencing dock-less E-bike-share mode substitution: 

Evidence from Sacramento, California. Transportation Research Part D: Transport and Environment, 99, 

102990. https://doi.org/10.1016/J.TRD.2021.102990 

Fuller, S., Fitch, D., Agostino, M. C. D., Fuller, S., Fitch, D., & Agostino, M. C. D. (2021). Local Policies for Better 

Micromobility. https://doi.org/10.7922/G2FJ2F3B 

Government of the District of Columbia. (2018). Dockless Vehicle Sharing Demonstration. 

https://ddot.dc.gov/sites/default/files/dc/sites/ddot/publication/attachments/Dockless Demonstration 

Evaluation 010319.pdf 

Graehler, M., Mucci, R. A., & Erhardt, G. D. (2019). Understanding the Recent Transit Ridership Decline in Major 

US Cities: Service Cuts or Emerging Modes? 98th Annual Meeting of the Transportation Research Board, 

January, 1–19. 

Heineke, K. (2020). The future of micromobility: Ridership and revenue after a crisis, McKinsey Center for Future 

Mobility. McKinsey. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-

future-of-micromobility-ridership-and-revenue-after-a-crisis 

Hibbard, M. (2018). Lime Launches Electric Dock-Free Scooter Service. 

https://www.metrostlouis.org/nextstop/lime-launches-electric-dock-free-scooter-service/ 

Lime. (2019). Scooters In Brookline Have Replaced More Than 50,000 Car Trips. https://www.li.me/second-

street/scooters-brookline-replaced-more-than-50000-car-trips 



 

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects 38 

 

Martin, R., & Xu, Y. (2022). Is tech-enhanced bikeshare a substitute or complement for public transit? 

Transportation Research Part A: Policy and Practice, 155, 63–78. 

https://doi.org/10.1016/J.TRA.2021.11.007 

Matlesky, G., & Department of Environment. (2018). Shared Mobility Devices Pilot Program. 

https://www.atlantaga.gov/home/showdocument?id=44818 

Metro Bike. (2010). Nice Ride Minnesota Survey Results. https://bike-sharing.blogspot.com/2010/11/nice-ride-

minnesota-survey-results.html 

Mohiuddin, H. (2021). Planning for the first and last mile: A review of practices at selected transit agencies in 

the united states. Sustainability (Switzerland), 13(4), 1–19. https://doi.org/10.3390/su13042222 

Mohiuddin, H., Fukushige, T., Fitch, D. T., & Handy, S. L. (2021). Does Dockless Bike-Share Influence Transit 

Use? Evidence from Sacramento Region. Under Review at International Journal of Sustainable 

Transportation. 

Oeschger, G., Carroll, P., & Caulfield, B. (2020). Micromobility and public transport integration: The current 

state of knowledge. Transportation Research Part D: Transport and Environment, 89(November). 

https://doi.org/10.1016/j.trd.2020.102628 

Portland Bureau of Transportation. (2019). 2018 E-Scooter Findings Report. 

https://www.portland.gov/sites/default/files/2020-04/pbot_e-scooter_01152019.pdf 

San Francisco Municipal Transportation Agency. (n.d.). Bikeshare. Retrieved December 8, 2021, from 

https://www.sfmta.com/getting-around/bike/bike-share 

San Francisco Municipal Transportation Agency. (2019). Powered Scooter Share Mid-Pilot Evaluation. 

https://www.sfmta.com/sites/default/files/reports-and-

documents/2019/08/powered_scooter_share_mid-pilot_evaluation_final.pdf 

Seattle Department of Transportation. (2020). 2019 FREE-FLOATING BIKE SHARE EVALUATION REPORT. 

https://www.seattle.gov/Documents/Departments/SDOT/BikeProgram/2019_FreeFloat_BikeSharePermi

t_Evaluation.pdf 

The City of Chicago. (2020). E-SCOOTER PILOT EVALUATION. 

https://www.chicago.gov/content/dam/city/depts/cdot/Misc/EScooters/E-

Scooter_Pilot_Evaluation_2.17.20.pdf 

The City of Los Angeles. (2020). DOCKLESS BIKE/SCOOTER SHARE PILOT PROGRAM UPDATE. 

http://clkrep.lacity.org/onlinedocs/2017/17-1125_rpt_DOT_02-12-2020.pdf 

 



 

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects 39 

 

Appendix A: Trip Distance Model Parameter Summaries 

Table 5. Trip Distance Model Parameter Summaries 

Observed trips = 
289,891 

Model 1 Model 2 Model 3 

Fixed effects Estimate Std.Error t-score Estimate Std.Error t-score Estimate Std.Error t-score 

Euclidean Dist (mile) 1.572 0.005 314.3    0.680 0.003 212.1 

Trip Duration (min)    0.006 0.000 672.3 0.057 0.000 565.9 

R-squared 0.404 
  

0.756 
  

0.814 
  

Adjusted R-squared 0.404 
  

0.756 
  

0.814 
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Appendix B: Transit Model Parameter Summaries 

Table 6. Transit Model Parameter Summaries 

Observed trips = 
289,891 

Buffer Distance 

50 m 100 m 200 m 

Fixed effects Estimate Std.Error t-score Estimate Std.Error t-score Estimate Std.Error t-score 

(Intercept) 1.09 0.39 2.78 1.23 0.39 3.12 1.19 0.39 3.03 
Micromoibility Use          

Bus Stop 0.03 0.02 1.38 0.05 0.03 1.74 0.05 0.03 1.66 
Railway station 0.08 0.00 26.90 0.07 0.00 28.40 0.06 0.00 39.74 

Railway Station 3.59 0.07 52.64 3.57 0.07 52.43 3.56 0.07 52.27 
Temporal          

Sunday -0.27 0.00 -407.13 -0.27 0.00 -405.87 -0.27 0.00 -406.08 
Weekday 0.50 0.00 907.12 0.50 0.00 902.79 0.49 0.00 871.04 

Socioeconomics          
Population density  0.00 0.00 13.05 0.00 0.00 12.74 0.00 0.00 12.86 
Female (%) 0.51 0.04 12.41 0.50 0.04 12.05 0.51 0.04 12.23 
Black (%) -0.17 0.03 -6.50 -0.17 0.03 -6.27 -0.17 0.03 -6.38 
Low Income (%) 0.06 0.02 3.12 0.05 0.02 2.71 0.06 0.02 3.10 
Student (%) -1.01 0.06 -18.26 -0.98 0.06 -17.63 -0.98 0.06 -17.76 

Mode Share          
Car -1.03 0.10 -10.33 -1.19 0.10 -11.93 -1.13 0.10 -11.29 
Transit 0.50 0.10 5.28 0.32 0.10 3.40 0.38 0.10 4.00 
Active 
Transportation 

0.45 0.14 3.25 0.30 0.14 2.16 0.28 0.14 2.02 

Walkability Index          
Walkability Index 0.06 0.00 43.32 0.06 0.00 43.70 0.06 0.00 43.45 

Random effects Variance Std.Dev. 
 

Variance Std.Dev. 
 

Variance Std.Dev. 
 

Transit Stop 3.01 1.74 
 

3.01 1.74 
 

3.01 1.73 
 

City 0.99 1.00  0.99 0.99  0.99 0.99  
City:Micromobility 
Use 

0.00 0.07 
 

0.01 0.09 
 

0.01 0.08 
 

Period 0.06 0.24 
 

0.06 0.24 
 

0.06 0.24 
 

AIC 3964769 
 

3967185 
 

3965842 
 

BIC 3964981 
 

3967396 
 

3966053 
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Log likelihood -1982365 
 

-1983572 
 

-1982901 
 

Table 7. Conditional modes of the random effects by city 

 50 m 100 m 200 m 

 Intercept Micromobility Use Intercept Micromobility Use Intercept Micromobility Use 

Arlington -0.578 -0.036 -0.569 -0.039 -0.578 -0.022 

Atlanta -0.500 -0.106 -0.494 -0.115 -0.504 -0.071 

Los Angeles 1.630 -0.057 1.639 -0.073 1.625 -0.066 

Miami -1.331 -0.018 -1.320 -0.043 -1.330 -0.020 

Portland -0.145 0.079 -0.130 0.093 -0.122 0.209 

Sacramento -0.787 -0.107 -0.777 0.151 -0.786 -0.013 

San Francisco 1.099 -0.029 1.103 -0.045 1.098 -0.036 

Santa Monica 0.611 0.023 0.547 0.071 0.597 0.018 

  



 

Micromobility Trip Characteristics, Transit Connections, and COVID-19 Effects 42 

 

Appendix C: Micromobility Service by City 

Table 8. List of Micromobility Service by City 

 Micromobility Service Data 
Source 

GBFS Data Available 

 
Docked bike Dock-less 

bike 
E-scooter   

Arlington Capital Bikeshare N/A Lime, JUMP, Bird, Razor, Skip (All 
suspended in 03/2020) 

 JUMP 

Atlanta Relay Bike Share JUMP JUMP, Bird, Wheels, Boaz Bikes, Bolt (All 
suspended in 03/2020) 
Bird, Spin, Helbiz, Veoride (Resumed in 
07/2020) 

 JUMP scooters, Relay 
Bike Share 

Austin Austin B-cycle 
Domain B-cycle 
(docked count is for 
both systems) 

JUMP Bird, Lime, Spin, Wheels (All suspended in 
03/2020; Bird resumed in 04/2020 with 
phased rollout; Lime and Spin resumed in 
05/2020; Wheels resumed in 06/2020 

 JUMP bikes, JUMP 
scooters 

Bishop 
Ranch 

BriteBikes 
(Suspended only in 
03/2020) 

N/A N/A  BriteBikes 

Davis N/A JUMP 
(Suspended 
in 03/2020) 

N/A  JUMP bikes 

Denver Denver B-cycle 
(Closed in 01/2020) 

JUMP 
(Suspended 
04/2020; 
resumed 
05/2020) 

Lime, Lyft, Razor, Bird, Spin (Bird and Lime 
suspended 03/2020; resumed 04/2020 
with phased rollout) 

 JUMP bikes, B-cycle 

Detroit Mo Go N/A Bird, Spin, Lime (All suspended 03/2020; 
Bird and Spin resumed 05/2020) 

 Lime, Spin, Bird 

LA Metro Bike Share Los 
Angeles 

JUMP JUMP, Lime, Wheels, Bolt, Sherpa, Clevr, 
Bird, CLOUD, Lyft, Spin (Wheels and Lime 
suspended in 03/2020; Wheels resumed in 
06/2020) 

 JUMP bikes, Metro Bike 
Share, JUMP scooters, 
Lime, Spin, Bird, Lyft, 
Wheels 

Memphis Explore N/A Bird  Explore Bike Share 
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 Micromobility Service Data 
Source 

GBFS Data Available 

Miami Citi Bike Miami 
(Suspended only in 
03/2020) 

JUMP Lime, Lyft, Spin, Bird, JUMP (All suspended 
in 03/2020) 

 JUMP scooters 

Portland Biketown No service Spin, Razor, Lime, Bird (Lime and Bird 
suspended their service in 03/2020, but 
resumed in 05/2020 

 Biketown, Bird 

Sacramento N/A JUMP 
(Suspended 
in 03/2020) 

JUMP (Suspended in 03/2020)  JUMP scooters 

Santa 
Monica 

Breeze JUMP 
(Suspended 
in 03/2020) 

Bird, Lyft  Breeze, bird 

San 
Francisco 

Bay Wheels JUMP, Spin JUMP, Lime, Scoot, Spin (JUMP, Lime and 
Scoot suspended in 03/2020; Scoot 
resumed in 05/2020) 

 JUMP bikes, JUMP 
scooters 

Tampa Coast Bike Share JUMP Spin, Bird, Lime, JUMP (Bird and Lime 
suspended in 03/2020; Spin and JUMP 
suspended in 05/2020; All resumed in 
07/2020) 

 JUMP scooters, Coast 
Bike Share 

Washington 
DC 

Capital Bikeshare JUMP, Helbiz JUMP, Lyft, Skip, Spin  JUMP bikes, JUMP 
scooters, Lime, Lyft, Spin, 
Bird 

Source: USDOT Bureau of Transportation Statistics, General Bikeshare Feed Specification (https://github.com/NABSA/gbfs) 
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